Numerical simulation of lava flows based on depth-averaged equations
نویسندگان
چکیده
Risks and damages associated with lava flows propagation (for instance the most recent Etna eruptions) require a quantitative description of this phenomenon and a reliable forecasting of lava flow paths. Due to the high complexity of these processes, numerical solution of the complete conservation equations for real lava flows is often practically impossible. To overcome the computational difficulties, simplified models are usually adopted, including 1-D models and cellular automata. In this work we propose a simplified 2D model based on the conservation equations for lava thickness and depth-averaged velocities and temperature which result in first order partial differential equations. The proposed approach represents a good compromise between the full 3-D description and the need to decrease the computational time. The method was satisfactorily applied to reproduce some analytical solutions and to simulate a real lava flow event occurred during the 1991-93 Etna eruption.
منابع مشابه
Numerical Investigation of Island Effects on Depth Averaged Fluctuating Flow in the Persian Gulf
In the present paper simulation of tidal currents on three-dimensional geometry of the Persian Gulf is performed by the solution of the depth averaged hydrodynamics equations. The numerical solution was applied on two types of discritized simulation domain (Persian Gulf); with and without major islands. The hydrodynamic model utilized in this work is formed by equations of continuity and motion...
متن کاملNumerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملA case study of flood dynamic wave simulation in natural waterways using numerical solution of unsteady flows
Flood routing has many applications in engineering projects and helps designers in understanding the flood flow characteristics in river flows. Floods are taken unsteady flows that vary by time and location. Equations governing unsteady flows in waterways are continuity and momentum equations which in case of one-dimensional flow the Saint-Venant hypothesis is considered. Dynamic wave model as ...
متن کاملA depth-averaged electrokinetic flow model for shallow microchannels
Electrokinetic flows with heterogeneous conductivity configuration occur widely in microfluidic applications such as sample stacking and multidimensional assays. Electromechanical coupling in these flows may lead to complex flow phenomena, such as sample dispersion due to electro-osmotic velocity mismatch, and electrokinetic instability (EKI). In this work we develop a generalized electrokineti...
متن کاملNumerical Study of Reynolds Number Effects on Flow over a Wall-Mounted Cube in a Channel Using LES
Turbulent flow over wall-mounted cube in a channel was investigated numerically using Large Eddy Simulation. The Selective Structure Function model was used to determine eddy viscosity that appeared in the subgrid scale stress terms in momentum equations. Studies were carried out for the flows with Reynolds number ranging from 1000 to 40000. To evaluate the computational results, data was compa...
متن کامل